Exploring the myriapod body plan: expression patterns of the ten Hox genes in a centipede.
نویسندگان
چکیده
The diversity of the arthropod body plan has long been a fascinating subject of study. A flurry of recent research has analyzed Hox gene expression in various arthropod groups, with hopes of gaining insight into the mechanisms that underlie their evolution. The Hox genes have been analyzed in insects, crustaceans and chelicerates. However, the expression patterns of the Hox genes have not yet been comprehensively analyzed in a myriapod. We present the expression patterns of the ten Hox genes in a centipede, Lithobius atkinsoni, and compare our results to those from studies in other arthropods. We have three major findings. First, we find that Hox gene expression is remarkably dynamic across the arthropods. The expression patterns of the Hox genes in the centipede are in many cases intermediate between those of the chelicerates and those of the insects and crustaceans, consistent with the proposed intermediate phylogenetic position of the Myriapoda. Second, we found two 'extra' Hox genes in the centipede compared with those in Drosophila. Based on its pattern of expression, Hox3 appears to have a typical Hox-like role in the centipede, suggesting that the novel functions of the Hox3 homologs zen and bicoid were adopted somewhere in the crustacean-insect clade. In the centipede, the expression of the gene fushi tarazu suggests that it has both a Hox-like role (as in the mite), as well as a role in segmentation (as in insects). This suggests that this dramatic change in function was achieved via a multifunctional intermediate, a condition maintained in the centipede. Last, we found that Hox expression correlates with tagmatic boundaries, consistent with the theory that changes in Hox genes had a major role in evolution of the arthropod body plan.
منابع مشابه
Evolution of the entire arthropod Hox gene set predated the origin and radiation of the onychophoran/arthropod clade
BACKGROUND Dramatic changes in body size and pattern occurred during the radiation of many taxa in the Cambrian, and these changes are best documented for the arthropods. The sudden appearance of such diverse body plans raises the fundamental question of when the genes and the developmental control systems that regulate these designs evolved. As Hox genes regulate arthropod body patterns, the e...
متن کاملSpatial expression of Hox cluster genes in the ontogeny of a sea urchin.
The Hox cluster of the sea urchin Strongylocentrous purpuratus contains ten genes in a 500 kb span of the genome. Only two of these genes are expressed during embryogenesis, while all of eight genes tested are expressed during development of the adult body plan in the larval stage. We report the spatial expression during larval development of the five 'posterior' genes of the cluster: SpHox7, S...
متن کاملComparative Analysis of Hox Gene Expression in the Polychaete Chaetopterus: Implications for the Evolution of Body Plan Regionalization1
SYNOPSIS. The Hox genes are widely regarded as candidates for involvement in major evolutionary changes in body plan organization. We examine Hox gene expression data for several taxa, in relation to recent work on the polychaete annelid Chaetopterus. The work in Chaetopterus shows the basic conservation of colinearity of anterior expression boundaries seen in other groups. It also reveals nove...
متن کاملHox and ParaHox gene expression in early body plan patterning of polyplacophoran mollusks
Molecular developmental studies of various bilaterians have shown that the identity of the anteroposterior body axis is controlled by Hox and ParaHox genes. Detailed Hox and ParaHox gene expression data are available for conchiferan mollusks, such as gastropods (snails and slugs) and cephalopods (squids and octopuses), whereas information on the putative conchiferan sister group, Aculifera, is ...
متن کاملAnterior boundaries of Hox gene expression in mesoderm-derived structures correlate with the linear gene order along the chromosome.
The developmental expression patterns of four genes, Hox 1.1, Hox 1.2, Hox 1.3 and Hox 3.1, were examined by in situ hybridization to serial embryonic sections. The three genes of the Hox 1 cluster, used in this study, map to adjacent positions along chromosome 6, whereas the Hox 3.1 gene maps to the Hox 3 cluster on chromosome 15. The anterior expression limits in segmented mesoderm varied amo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 129 5 شماره
صفحات -
تاریخ انتشار 2002